

അമ്രത് വാർത്താപ്രതിക്

**National e-Governance Award 2025
for PMS & WQMIS**

PMS & WQMIS - “Centralized System for Project Monitoring and Water Quality Monitoring”

भारत सरकार

प्रशासनिक सुधार और लोक शिकायत विभाग

द्वारा

श्रेणी-गवर्नमेंट प्रोसेस री-इंजीनियरिंग बाइ यूज ऑफ टेक्नोलॉजी फॉर डिजिटल ट्रांसफॉर्मेशन
के लिए

राष्ट्रीय ई-गवर्नेंस पुरस्कार 2025

(राजत)

राज्य मिशन प्रबंधन इकाई अमृत, केरल
के

प्रोजेक्ट मॉनीटरिंग सिस्टम एंड वाटर क्वालिटी मॉनीटरिंग इनफॉर्मेशन सिस्टम
को
प्रदान किया जाता है

Government of India

Department of Administrative Reforms and Public Grievances
is pleased to present

National Award for e-Governance 2025

(Silver)

to

Project Monitoring System and Water Quality Monitoring
Information System

of

State Mission Management Unit Amrut, Kerala

in category

Government Process Re-engineering by Use of Technology for
Digital Transformation

वी. श्रीनिवास / V. Srinivas

सचिव / Secretary

National Award for
e-Governance 2025

അമൃത്‌വാർത്താ പത്രിക

കെട്ടോബർ 2025 | പുസ്തകം 4 | ലക്കം 8

തദ്ദേശസ്വയംഭരണ വകുപ്പ് കേരള സർക്കാർ

ശ്രീ എഡിറ്റർ
സുജീ ഷാജി എറു.എ.എസ്
മിഷൻ ഡയറക്ടർ

എഡിറ്റർ
മുഖ്യ കൊച്ചുക്കുള്ളിൻ
എൻവിയോൺമെന്റ് എക്സ്പെര്ട് കും
ഹൈഡ്രോ ജിയോളജിസ്റ്റ്

അസിസ്റ്റന്റ് എഡിറ്റർ
സാവിയോ സജി ഇ.എൻ.

സ്റ്റോർ മിഷൻ മാനേജ്മെന്റ്
മോണിറ്റർ (അമൃത്)
നാലം നില, മീറ്റാക്ഷീപ്പാസാ,
ആർക്കേട്ട് ബിൽഡിംഗ്,
ഗവ. ആരൂപ്യത്തിക്കോ എതിർവാശം,
തെരുവുക്കാട്, തിരുവനന്തപുരം - 695014
ഫോൺ നം. : +91-471-2323856,
ഫോക്സ് : +91-471-2322857
വെബ്സൈറ്റ് : www.amrutkerala.in
ഇമെയിൽ : smmukerala@gmail.com

എഡിറ്റോറിയൽ

അമൃത് മിഷൻ പ്രവർത്തനങ്ങളിൽ ദേശീയ ശ്രദ്ധയും അംഗീകാരവും നേടിക്കൊണ്ട് ഒരു നാഴികക്കല്ല് കൂടി കൈവരിക്കുവാൻ നമുക്ക് സാധിച്ചു. കേരള അമൃത് മിഷൻ പ്രോജക്ട് മോൺറിറ്റ് ആണ് വാട്ടർ കൂളിറ്റി മോൺറിറ്റ് സിസ്റ്റത്തിന് കേന്ദ്ര സർക്കാർഡ് 2025 ലെ ദേശീയ ഇ-ഗവേണ്ടിന് സിൽവർ അവാർഡ് ലഭിച്ചു. അമൃത് പ്രോജക്ടുകളുടെ നിരീക്ഷണത്തിനും, ജല ഗുണ നിലവാര പരിശോധനയ്ക്കും വേണ്ടിയുള്ള ഓൺലൈൻ സംവിധാനം ദൈക്ഷികയായി ദേശീയ ഇ-ഗവേണ്ടിന് സമ്മാനത്തിൽ കേന്ദ്ര സഹമന്ത്രി ഡോ. ജിതേന്ദ്ര സിംഗൽ നിന്നും അമൃത് കേരള മിഷൻ വേണ്ടി എന്നിക്ക് അവാർഡ് സീകർക്കുവാൻ സാധിച്ചു. 5 ലക്ഷം രൂപയും പ്രശസ്തി പത്രവും ട്രോഫിയും അടങ്കുന്നതാണ് അവാർഡ്. ഈ അഭിമാനാർഹമായ നേട്ടത്തിന് പിന്നിൽ പ്രവർത്തിച്ച എല്ലാ അമൃത് മിഷൻ ജീവനക്കാർക്കും നാഡി അർപ്പിക്കുന്നു. ജല വിതരണം, സിവിലേജ്, ദൈയിനേജ്, അർബൻ ട്രാൻസ്പോർട്ട്, ജലാശയങ്ങളുടെ പുനരുപ്പജീവനം, ഹരിത ഇടങ്ങളും, പാർക്കുകളും എന്നിങ്ങനെ 6 സെക്കണ്ടുകളിലായി അമൃത് ഒന്നും ഒന്നും ഘട്ടങ്ങളിലൂടെ നടപ്പിലാക്കി വരുന്ന 1845 പ്രോജക്ടുകളുടെ മോൺറിറ്റ് നടത്തുവാനാണ് ഈ സംവിധാനം തയ്യാറാക്കിയിരിക്കുന്നത്.

സുസ്ഥിര നഗര വികസനത്തിലെപ്പറ്റിയും അടിസ്ഥാന ഭൗതിക വികസന സൗകര്യങ്ങൾ ആസൂത്രണം ചെയ്യാനായി രൂപീകരിച്ച അർബൻ പോളിസി കമ്മീഷൻ അനുമതി റിപ്പോർട്ടിംഗ് അടിസ്ഥാനത്തിൽ നടത്തിയ കേരള അർബൻ കോൺഫേഴ്സ് 2025 അമൃത് മിഷനും കീയാത്മകമായി പങ്കെടുത്തു. കോൺഫേഴ്സിനോടുബന്ധിച്ച് അമൃത് മിഷൻ നേട്ടങ്ങൾ വിളിച്ചേരുന്ന പ്രാർശന റ്റൂൾ ഒരുക്കിയിരുന്നു. നഗരങ്ങൾക്ക് വികസനത്തിന്റെ അമുതേക്കി മുന്നോട്ട് പോകുന്ന മിഷൻ എവരുടെയും പ്രശ്നം പിടിച്ചുപറ്റി.

പാലക്കാട് നഗരസഭയിലെ സെപ്റ്റേംബർ ടൈറ്റിലെ നിർമ്മാണം താരിത്തെതിയിൽ നടന്നുവരികയാണ്. മാലിന്യ സംസ്കരണ പ്രവർത്തന അഞ്ചോട് മുംബാ തിരിച്ചു നിന്ന് സമൂഹത്തിന്റെ മനമാറ്റം ഈ പ്രവർത്തന നിന്നും പുർത്തി യാകുവാൻ ഉത്തേജകമായിട്ടുണ്ട്. ഈനിയും കൂത്യമായ ബോധവൽക്കരണ പ്രവർത്തനങ്ങളിലൂടെ മാലിന്യ സംസ്കരണ റംഗത്ത് നവമായൊരു കാഴ്ചപ്പൂർണ്ണ രൂപപ്രൈഡുത്തിയെടുക്കാൻ നമുക്ക് സാധിക്കും. ശേഷിക്കുന്ന സിവേജ് സെപ്റ്റേംബർ സെക്കന്റുകളിലെ പ്രവർത്തനങ്ങൾ കൂടി അടിയന്തിരമായി പുർത്തെക്കിട്ടുവാൻ ശ്രദ്ധിക്കണം.

മിഷൻ ഡയറക്ടർ

(സ്വന്തമായ വിതരണത്തിന് മാത്രം)

കേരള അർബന് കോൺക്ലേവ് 2025

ഉള്ളടക്കം

5 കേരള അർബന് കോൺഫേഴ്സ് 2025

7 ഇ-ഗവേണൻസ് - ദേശീയ അവാർഡ്

10 എ.എ. കെചുണ്ണി മാസ്റ്റർ പാർക്ക്

11 അമൃത് - നേടഞ്ഞൾ

12 യാകര 100 കെ.എൽ.ഡി. സെപ്റ്റേജ് ട്രീറ്റ്മെന്റ് പ്ലാൻ്റ്

13 “Climate Change Oriented Water Resources Challenges and Options”- Where insights Meet Fore-sights.....

കേരള അർബന് കോൺക്ലേവ് 2025

‘കേരള അർബന് കോൺഫേഴ്സ് 2025’

കേരളത്തിന്റെ സമഗ്ര നഗരനയം രൂപപ്പെടുത്തുക എന്ന ലക്ഷ്യത്തോടെ സംഘടിപ്പിച്ച ‘കേരള അർബന് കോൺഫേഴ്സ് 2025’ വൊഗു മുഖ്യമന്ത്രി ശ്രീ. വിജയൻ ഉദ്ഘാടനം ചെയ്തു. ബഹു. കേന്ദ്ര നഗരകാര്യ വകുപ്പ് മന്ത്രി ശ്രീ. മനോഹർലാൽ വട്ടർ മുഖ്യാതിഥിയായി പങ്കെടുത്തു. ചടങ്ങിൽ ബഹു. തദ്ദേശ സാധാരണ വകുപ്പ് മന്ത്രി ശ്രീ. എം.ബി. രാജേഷ് അഖ്യക്ഷനായിരുന്നു. ‘ആസ്പദയിൽ സിറ്റിസ് ലൈറ്റിംഗ് കമ്മ്യൂണിറ്റിസ്’ എന്ന ആരാധനയിൽ അധിഷ്ഠിതമായാണ് കോൺഫേഴ്സ് സംഘടിപ്പിച്ചത്.

ഉദ്ഘാടന സമേളനത്തിനുശേഷം വിദേശ രാജ്യങ്ങളിൽ നിന്നുള്ള മന്ത്രിമാരും കേന്ദ്ര മന്ത്രിമാരും പങ്കെടുത്ത ഒരു ലൈവ് പൊളിറ്റിക്കൽ ഫോറം ഓഫ് മിനിസ്ട്രീസും, കേരളത്തിലെ മുഴുവൻ കോൺഫറേഷൻ മേയർമാരും മുനിസിപ്പൽ ചെയർപേഴ്സണൽമാരും പങ്കെടുക്കുത്ത കൗൺസിലേഴ്സ് അസംബിയും സംഘടിപ്പിച്ചിരുന്നു.

രണ്ടു ദിവസങ്ങളിലായി 36 സെക്ഷൻകളിലായി 295 പ്രദാഷകൾ വിവിധ വിഷയങ്ങളിൽ പ്രദാഷണം നടത്തി. മുന്ന് ഫെബ്രുവരി പൊളിറ്റിക്കൽ ഫോറംജും അഞ്ച് ഫീനറി സെക്ഷൻകളും 10 നയരൂപികരണ സെക്ഷനും രണ്ട് ഫോറസ് സെക്ഷനും അഞ്ച് ഫയർസെസായ് ചാറ്റും 11 വട്ടമേര സമേളനങ്ങളും കോൺഫേഴ്സിലെ ഭാഗമായി സംഘടിപ്പിച്ചിരുന്നു.

കേരള അർബന് കോൺക്ലേവ് 2025
പിറ്റെങ്ങളിലൂടെ.....

അമൃത് മിഷൻ പ്രോജക്ട് മോൺറിൻഡ് ആൻഡ് വാട്ടർ കൗൺസിൽ മോൺറിൻഡ് സിസ്റ്റുട്ടിനും കേന്ദ്ര സർക്കാരിന്റെ 2025 ലെ ദേശീയ ഇ-ഗവേണൻസ് സിൽവർ അവാർഡ് ലഭിച്ചു. അമൃത് പ്രോജക്ടുകളുടെ നിരീക്ഷണത്തിനും, ജല ശുദ്ധ നിലവാര പരിശോധനയ്ക്കും വേണ്ടിയുള്ള ഓൺലൈൻ സംവിധാനം ഒരുക്കിയതിനാണ് അവാർഡ്. 22.09.2025 ന് വിശ്വാപട്ടണത്ത് നടന്ന 28-ാമത് ദേശീയ ഇ-ഗവേണൻസ് സമേഖനത്തിൽ കേന്ദ്ര സഹമന്ത്രി ഡോ. ജിതേന്ദ്ര സിംഗിൽ നിന്നും അമൃത് കേരള മിഷൻ ഡയറക്ടർ ശ്രീ. സുരജ് ഷാജി എഫ്.എ.എസ്. അവാർഡ് ഏറ്റുവാങ്ങി. 5 ലക്ഷം രൂപയ്ക്ക് പ്രദാനം പത്രവും ട്രോഫിയും അടങ്കുന്നതാണ് അവാർഡ്.

ജല വിതരണം, സീവരേജ്, ദേയയിനേജ്, അർബൻ ട്രാൻസ്പോർട്ട്, ജലാശയങ്ങളുടെ പുനരുപയോഗം, ഹരിത ഇടങ്ങളും, പാർക്കുകളും എന്നിങ്ങനെ 6 സെക്കന്റുകളിലായി അമൃത് ഒന്നും രണ്ടും ഘട്ടങ്ങളിലും നടപ്പിലാക്കി വരുന്ന 1845 പ്രോജക്ടുകളുടെ മോൺറിൻഡ് നടത്തുവാനാണ് ഈ സംവിധാനം തയ്യാറാക്കിയിരിക്കുന്നത്. നഗരസഭാ തലത്തിൽ സിറ്റി മിഷൻ മാനേജ്മെന്റ് യൂണിറ്റിലെ എക്സപ്രിട്ടുകളാണ് പ്രോജക്ട് സംബന്ധമായ എല്ലാ വിവരങ്ങളും ഈ സംവിധാനത്തിലേയ്ക്ക് അപയോഗിക്കുന്നത്. ഈ വിവരങ്ങൾ വിശകലനം ചെയ്യുകയും ഒരു ധാഷ്പഭോർഡിലും പ്രസിദ്ധീകരിക്കുകയും ചെയ്യുന്നു. ധാഷ്പഭോർഡിലും പബ്ലിക് പബ്ലിക് അമൃത് മിഷൻ ഒരുപാതാക്കി വെബ്സൈറ്റിലും (<https://amrutkerala.in>) ലഭ്യമാണ്.

2768 കോടി രൂപയുടെ പ്രവർത്തന അളവാണ് അമൃത് ഓന്നം രണ്ടും പലവി കളിലായി കേരളം മുതുവരെ പൂർത്തി യാക്കിയത്. ജലവിതരണ പദ്ധതികൾ കാണി 1848 കോടിയും മലിനജല സംസ്കരണത്തിന് 359 കോടിയും അമൃത് പദ്ധതികൾ വഴി നടപ്പിലാക്കിയിട്ടുണ്ട്. ബാക്കിയുള്ള പദ്ധതികൾ പൂരോഗ മിക്കുകയാണ്. അമൃത് ഓന്നം രണ്ടും പദ്ധതികളിലായി ആകെ 5872 കോടിയുടെ അമൃത് പദ്ധതികളിൽ 3337 കോടി സംസ്ഥാന സർക്കാർഭേദ്യും നഗരസഭയുടെയും വിഹിതവും 2535 കോടി കേന്ദ്ര വിഹിതവുമാണ്.

ଶେଇ ଅଂସିକାରଂ କେତେବେ ଅନ୍ତର୍ମୁଦ୍ରା କେବଳ ଟିକ୍ ତଥେବେ ସାଧାରଣେ ବକ୍ଷୁପ୍ତ ହିନ୍ଦୁମୁଦ୍ରାରେ ବେଳେକରିବାକୁମୁଦ୍ରାପ୍ତା

കുടാതെ നഗരസഭാതലത്തിൽ നടക്കുന്ന ജല ഗുണനിലവാര പരിശോധന ഫലങ്ങളും ഇല്ല സംഖ്യാത്തിൽ വഴി നിരീക്ഷിക്കപ്പെടുന്നു. ജല ഗുണനിലവാര പരിശോധനയ്ക്കായി സയം സഹായക സംഘടനകളിലെ (എസ്.എച്ച്.ജി.) സ്ക്രീക്കറ്റു, നഗരസഭകളും കുടുംബവും യൂണിറ്റും ചേർന്ന് തിരഞ്ഞെടുക്കുകയും അമുൽ മിഷൻ നേതൃത്വത്തിൽ ജലഗുണനിലവാര പരിശോധനയിൽ പരിശീലനം നൽകുകയും ചെയ്യുന്നു. ഇങ്ങനെ പരിശീലനം നേടുക അംഗങ്ങൾ ജലദേഹത്തിലുള്ളകളിൽ നിന്നും ജലം രേഖാചിത്ര വാടകൾ ടെസ്റ്റിംഗ് കിട്ടു ഉപയോഗിച്ച് ഗുണനിലവാര പരിശോധനയ്ക്കുന്നു. പരിശോധന റിസർവ്വ്, പ്രോജക്ട് മോൺറ്ററിംഗ് ആർട്ട് വടക്ക് കൂളിറ്റി മോൺറ്ററിംഗ് സിസ്റ്റത്തിലേയ്ക്ക് മൊബൈലും അപ്ലിക്കേഷൻ വഴി രേഖപ്പെടുത്തുന്നു. ഇല്ല വിവരങ്ങൾ വിശകലനം ചെയ്യുകയും ഒരു ധാഷ്യമോർഡിലൂടെ പ്രസിദ്ധീകരിക്കുകയും ചെയ്യുന്നു. ജല ഗുണ നിലവാര വ്യതിയാനങ്ങൾ വേഗത്തിൽ മനസ്സിലാക്കുന്നതിനും ആവശ്യമായ ഇടപെടലുകൾ നടത്തുന്നതിനും തുടർന്നും സഹായിക്കുന്നു.

എല്ലാ തരതിലുമുള്ള നഗര പദ്ധതികൾ നിർക്കശിക്കുവാൻ തക്കമുള്ള സവിശേഷതകളുള്ളതിനാൽ കാര്യക്ഷമവും സമഗ്രവും സുസ്ഥിരവുമായ നഗര ഇ-ഗവേണൻസ് സംവിധാനത്തിലേയ്ക്കുള്ള മുന്നേറ്റം ഇതിലൂടെ സാധ്യമാകുന്നു. അതിനാൽ തന്നെ എല്ലാ വകുപ്പുകൾക്കും പദ്ധതി നിർവ്വഹണ ഏജൻസികൾക്കും ഇത് ഒരു മാതൃകയായി സീക്രിക്കറ്റവാനും വഴിരെ എല്ലാപ്രതിഭയും പകർത്തുവാനും സാധിക്കുന്നതാണ്.

അമൃത് വാർത്താപത്രിക 2025 ഒക്ടോബർ

കൊച്ചി നഗരസഭയിൽ അമൃത് പദ്മതിയിൽ ഉൾപ്പെടുത്തി നവീകരിച്ച
എ.എ. കൊച്ചുണ്ണി മാസൂർ പാർക്ക് കോർപ്പറേഷൻ മേഖല ഉദ്ഘാടനം ചെയ്യുന്നു.

6 THEMATIC AREAS OF PROJECTS

ACHIEVEMENTS

1

2

3

4

5

6

Water Supply

- 6 Water Treatment Plant of 265 MLD
- 2.9 lakh beneficiaries (Tap connections)
- 3154 Kilometre Water Supply Network
- 20 Water Tanks (OHSR) of 365 lakh litre Capacity
- 21 Water KIOSK

Sewerage & Septage Management

- 7 Sewerage Treatment Plant of 28.2 MLD
- 2 Mobile Septage Treatment Units
- 87 Kilometre Sewerage Network
- 5015 Sewer Connections
- 86975 Household covered under Septage Management

Water Body Rejuvenation

- 385 Acre water body rejuvenated
- 375 water bodies under rejuvenation
- Biodiversity enhanced
- Groundwater & Surfacewater pollution reduced
- Groundwater recharging enhanced

Non- Motorized Urban Transport

- 5 Multilevel Car Parking (MLCP)
- 78 Km. Footpath & 7 Km. Cycle Track
- 27 Foot over bridges
- 1 Skywalk & 1 Subways

Green Spaces & Parks

- 156 Acre developed
- Reduced urban heat island effects
- Preserved water biodiversity
- Improved air quality
- Child & Divyang friendly

Stormwater Drainage

- 332 Kilometre Drain Network
- 1356 water logging points eliminated
- Prevent urban flooding
- Reduced Soil erosion
- Covered & fenced drain reduced solid waste pollution

അമൃത് 1.0 ഡിൽ സ്വിവേജ് & സെപ്പറേഷൻ സെക്കൻഡിൽ ഉൾപ്പെടുത്തി പാലക്കാട് നഗരസഭയിലെ യാകരയിൽ സ്ഥാപിക്കുന്ന സെപ്പറേഷൻ ടീറ്റേമെന്റ് പ്ലാറ്റ് നിർമ്മാണം പുരോഗമിച്ചുവരുന്നു. 100 കെ.എൽ.ഡി. ശ്രേഷ്ഠിയുള്ള പ്ലാറ്റാം സ്ഥാപിക്കുന്നത്. 3.86 കോടി രൂപ ചെലവിൽ നിർമ്മാണ ചെലവ് കണക്കാക്കിയിരിക്കുന്ന പ്ലാറ്റ് നിർമ്മാണം ഉടൻ പൂർത്തീകരിക്കും.

MURALI KOCHUKRISHNAN

Environment Expert cum Hydrogeologist,
State Mission Management Unit
AMRUT, Kerala

“Climate Change Oriented Water Resources Challenges and Options”- Where insights Meet Foresights.....

Introduction:

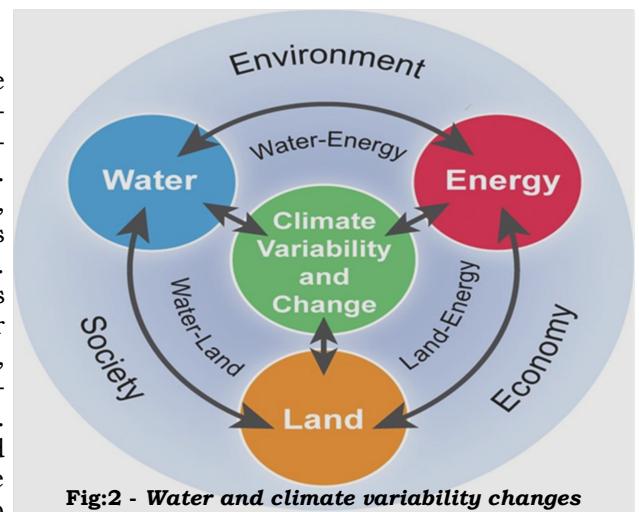
Fresh water resources are under stress around the world due to the exponential growth in population and per capita resource use, that are the drivers of energy consumption, anthropogenic climate, and hydrologic change. Significant research has been done on climate change assessment, mitigation and adaptation. However, there is only fragmentary research on global hydrologic change and the available data is limited, despite recognition of its importance. This degradation of fresh water resources is a harbinger of a major crisis. Its impact on humans and the ecology may be at least as severe as that caused by greenhouse gasses. Increasing urbanization is altering areas near river courses and low-lying coastal areas. Intensification of agriculture is contributing to deforestation and further desertification. Increased water use for agriculture and urbanization is leading to hydrologic modifications. It is important to understand, predict and manage the potential impacts of climate change on regional and global water resources. Local human modifications of the hydrologic cycle through direct use, storage and redistribution, changes in land cover and use, and pollution, is a primary concern for local and global risk management. A changing climate increases the uncertainty associated with the future availability and variability of fresh water sources. These are exacerbating factors of human-induced changes in the local, terrestrial hydrologic cycle. The effects are more pronounced at the river basin level and consequently in the groundwater resources. Since the immediate impacts of degradation of a freshwater resource are felt locally, assessment and recognition of the evolution of a *global water crisis* has been slow.

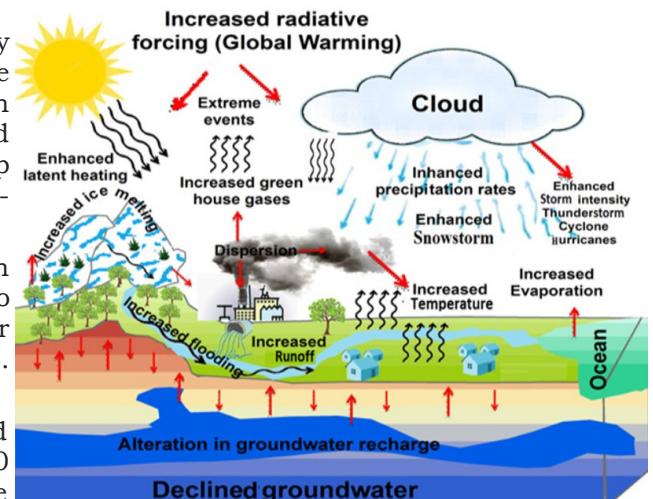
Water is an integral component of climate change and the primary medium through which it exhibits and also its impacts. With the world facing growing water challenges in many regions, how climate change will affect future societies cannot be understood without looking at its impact on the most vital resources of our planet. Water in a Changing World shows that changes in our water resources are shaped to a great extent by a number of key externalities, among them climate change, and that decisions taken far from the conventionally defined water sector have a tremendous influence on water resources and how they are used or misused. Water in a Changing World describes the dynamic linkages that interconnect changes in climate, the state of our water resources, demographic expansion and migration issues, food and energy shortages, and the continuing challenge of poverty. Rather than addressing these issues in isolation, it argues that **a holistic approach is crucial, if we are to solve the crises we face today and to avoid worse crises tomorrow.**

Fig: 1-Integrated and holistic approaches towards Water and climate change is required.

Water and Climate Variability Changes:

Water is the lifeblood of the planet and the state of the resource affects all natural, social and economic systems. Water is the fundamental link between the climate system, human society and the environment. Climate change directly affects the water cycle and, through it, the quantity and quality of water resources available to meet human and environmental demands. It can lead to both floods and drought. Rising sea levels have a serious effect on coastal aquifers, a major source of urban and regional water supply systems, and higher water temperatures and changes in extremes can exacerbate many forms of water pollution. Water supply reliability, health, agriculture, energy and aquatic ecosystems – all will feel the impact of these changes to the water cycle. The demand for water to meet these needs is also affected by climate change. The importance of water to sustainable social and economic development cannot be underestimated, yet many countries are already facing multiple water challenges, all of them compounded by climate change.


Climate change is primarily a water crisis. We feel its impacts through worsening floods, rising sea levels, shrinking ice fields, wildfires and droughts. However, water can fight climate change. Sustainable water management is central to build-up the resilience of societies and ecosystems and to reducing carbon emissions. Everyone has a role to play – actions at the individual and household levels are more vital.


In India, the hydrological cycle is deeply influenced by climate change, leading to significant shifts in precipitation patterns, river flows, and water availability. The monsoon, which is a critical component of India's water cycle, has become increasingly erratic, causing extreme events such as prolonged droughts and intense floods. Melting glaciers in the Himalayas, a crucial freshwater source for northern India, are altering river flows, impacting agriculture and drinking water supplies. Rising temperatures also accelerate evaporation, reducing soil moisture and groundwater recharge, exacerbating water scarcity in already arid regions. These changes pose challenges for food security, livelihoods, and disaster management across the country.

Basic Facts:

- ♦ By 2050, the number of people at risk of floods will increase from its current level of 1.2 billion to 1.6 billion. In the early to mid-2010s, 1.9 billion people, or 27% of the global population, lived in potential severely water-scarce areas. In 2050, this number will increase to 2.7 to 3.2 billion people. **(UNITED NATION 2020)**.
- ♦ Over a fifth of the world's basins have recently experienced either rapid increases in their surface water area indicative of flooding, a growth in reservoirs and newly inundated land; or rapid declines in surface water area indicating drying up of lakes, reservoirs, wetlands, floodplains and seasonal water bodies. **(United Nations Water 2021)**
- ♦ The ambition of new climate change mitigation pledges for 2030 needs to be four times higher to limit global warming to 2°C and seven times higher to get on track to limit global warming to 1.5°C. **(United nation Environment program 2021)**
- ♦ The current Arctic sea-ice cover (both annual and late summer) is at its lowest level since at least 1850 and is projected to reach practically ice-free conditions at its summer minimum at least once before 2050.

Fig:2 - Water and climate variability changes

Figure 4: Influence of Hydrological cycle in context of climate change

Water related Climate Risk and Essentials to Cope Up/ Adaptation:

Climate Risk	Sector wise Sensitivity analysis	Impacts/Maladaptation	List of resources essential to cope
Warmer temperatures	<p>Changes in watershed vegetation may alter the recharge of groundwater aquifers and change the quantity and quality of runoff into surface waters.</p> <p>Increased evaporation in surface sources of water.</p> <p>Increasing biological and chemical degradation of water quality.</p> <p>Changes in watershed vegetation pest and risks in watershed areas.</p> <p>Changes in watershed agricultural practices and in the resulting pollution loads from agriculture.</p> <p>Increased frequency or intensity of drought.</p>	<p>Depletion of both surface and groundwater recourses.</p> <p>Change in quality and quantity of water recourses</p> <p>Drought cycle period decreases.</p>	<p>Judicious utilization of water resources.</p> <p>Enhancement of soil and water conservation measures.</p> <p>Changes in agricultural patterns.</p>
More Frequent and/or Intense Extreme Weather Events	<p>Increased turbidity and sedimentation of surface water.</p> <p>Changes in nature of rainfall pattern leading to inadequate infiltration/groundwater recharge resulting in reduced flow and/or yield of water.</p> <p>More frequent and/or intense flash floods damaging infrastructure and disrupting services.</p> <p>Potential loss of reservoir storage as a result of increased erosion in watershed.</p> <p>Increased loading of pathogenic bacteria and parasites in reservoirs.</p> <p>Operational challenges to aquifer storage and recovery and water reclamation facilities.</p>	<p>Rise in turbidity levels in surface groundwater resources.</p> <p>Erratic rainfall patterns.</p> <p>Reduction in infiltration and percolation rate towards groundwater resources.</p> <p>Drastic changes in the groundwater regime of the project site.</p> <p>Intense flash flood at times of extreme rainfall intensity</p>	<p>Coping measures needs to combine a suite of technical / structural and non-structural measures.</p> <p>Promotion of integrated water resource management practices (IWRM)</p> <p>Run-off and flood management.</p> <p>Promotion of rainwater harvesting and recharge structures.</p> <p>Promotion of location specific soil and water conservation measures.</p> <p>Conservation of traditional water harvesting structures.</p> <p>Promotion of artificial recharge systems.</p> <p>Regular maintenance of traditional water bodies by desilting and bund management.</p> <p>Timely maintenance of canal flow paths.</p> <p>Technical knowledge up gradation of the watershed committee and LSG department on the type of specific adaptation measures required for climate adaptive measures.</p>
Changes in Precipitation	Reduced replenishment rates of groundwater resulting in declining water tables		"Same as mentioned above."

Impact of Climate Change on Water Resources & Hydrologic Cycle

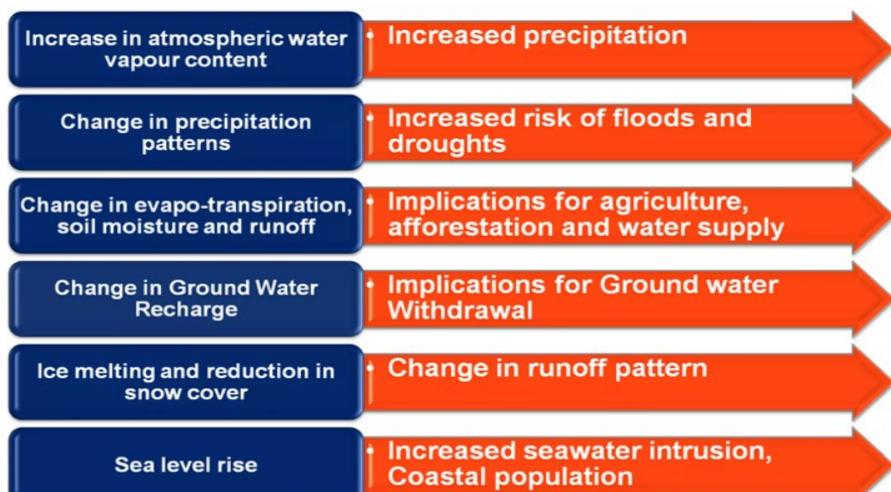


Figure:5:- Various Impacts of Climate change on Water resources and Hydrological cycles.

- ♦ Due to future uncertainties, the keynote for adaptation must be resilience – managing risks and building the capacity to deal with unpredictable events. No-regret and low-regret measures should be prioritised.

The issue explained:

1. **Water and climate change are inextricably linked:** Extreme weather events are making water more scarce, more unpredictable, more polluted or all three. These impacts throughout the water cycle threaten sustainable development, biodiversity, and people's access to water and sanitation.

Climate Variability Based Disasters:

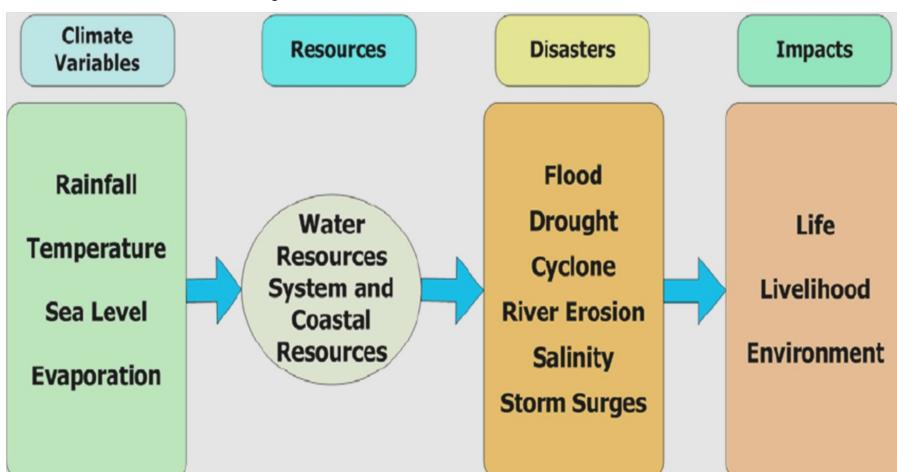


Figure: 6- Climate variability and Impacts

Key factors:

- ♦ There is mounting evidence in many regions of the impact of climate change on the Earth's hydrological cycle.
- ♦ Climate change is a basic driver of change in water resource availability and use alongside demographic, economic, social and technological forces, with which it interacts in a dynamic fashion.
- ♦ Lateral thinking '**out of the box**' is essential, both from those within the water sector and all others whose decisions have a major impact on water.
- ♦ Information about the status of availability and use of water and the potential impact of climate change is too poor to support informed policy decisions. There is an urgent need to gather, analyse and model data at all relevant levels – globally, Regionally and locally – and to reverse the decline in observational systems.
- ♦ Alongside mitigation, Governments/ Non-government agencies must adapt to climate change, and give priority to water resources management as a key aspect of adaptation to changes already in train.

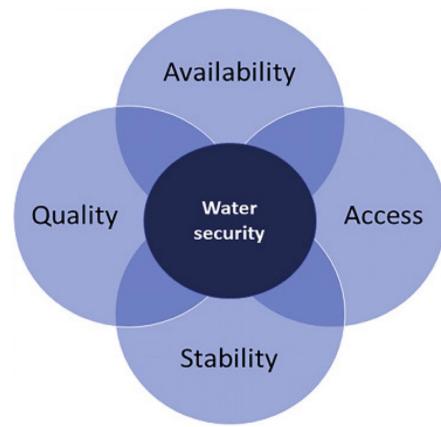


Figure:7 Climate change Impact on water Security

Climate change significantly impacts water security by altering the availability, quality, and distribution of freshwater resources. Rising temperatures increase evaporation rates and disrupt precipitation patterns, leading to more frequent droughts and floods. Melting glaciers and changing snowmelt cycles affect water supply in regions dependent on these sources, while sea-level rise threatens coastal freshwater aquifers with saltwater intrusion. Extreme weather events can damage water infrastructure and contaminate supplies, further compromising access. These challenges exacerbate existing water stress, affecting agriculture, industry, and communities, particularly in vulnerable regions with limited adaptive capacity.

2. Flooding and Rising sea levels can contaminate land and water resources with saltwater or faecal matter, can cause damage to water and sanitation infrastructure, such as waterpoints, wells, toilets and wastewater treatment facilities.

3. Glaciers, ice caps and snow fields are rapidly disappearing: Meltwater feeds many of the great river systems. Volatility in the cryosphere can affect the regulation of freshwater resources for vast numbers of people in lowland areas.

4. Droughts and wildfires are destabilizing communities and triggering civil unrest and migration in many areas. Destruction of vegetation and tree cover exacerbates soil erosion and reduces groundwater recharge, increasing water scarcity and food insecurity.

Climate change is intensifying extreme drought scenarios by altering precipitation patterns, increasing temperatures, and accelerating evaporation rates. Prolonged and severe droughts reduce water availability for agriculture, drinking, and ecosystems, leading to crop failures, food insecurity, and biodiversity loss. Regions dependent on seasonal rainfall or glacial melt are particularly vulnerable. Additionally, droughts increase the risk of wildfires, degrade soil health, and strain water management systems, creating a cycle of environmental and socio-economic challenges. These impacts are exacerbated in areas with poor water governance or over-extraction of groundwater, heightening vulnerability to future climate extremes.

5. Growing demand for water increases the need for energy-intensive water pumping, transportation, and treatment, and has contributed to the degradation of critical water-dependent carbon sinks such as peatlands. Water-intensive agriculture for food production, particularly meat, and for growing crops used as biofuels, can further exacerbate water scarcity.

6. Climate change, over exploitation of Groundwater and Sea water Intrusion

Climate Change intensifies Global water challenges in altering rainfall patterns, causing more extreme weather events. These changes disrupt groundwater recharge, making it harder to replenish vital under ground-water reserves. Further, Overexploitation of groundwater for agriculture, industry, and domestic use is depleting aquifers faster than they can be replenished. Ground water depletion lowers water tables, causing wells to dry up and threatening food security, particularly in water-scarce regions. It also leads to land subsidence, where the ground sinks, damaging infrastructure and reducing groundwater storage capacity. In coastal areas, over-pumping groundwater can cause seawater intrusion, where saltwater contaminates freshwater aquifers. Sea water intrusion degrades the quality of groundwater, making it unsuitable for drinking, irrigation, and industrial uses. This contamination increases desalination costs, putting further strain on already limited water resources. Climate change exacerbates seawater intrusion by rising sea levels and increasing the frequency of coastal storms.

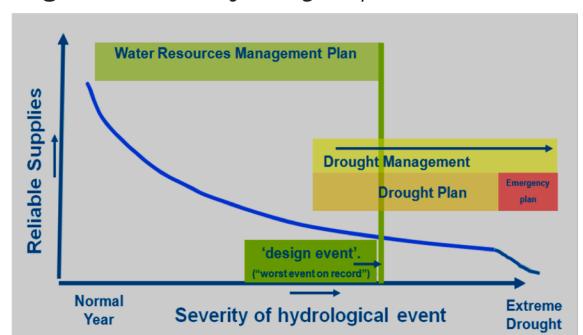

Figure:7 -Flooding and raising sea levels in Kerala, India

Figure:8 Melting of ice caps and snow field at Himalayas

Figure :9 On set of Drought / Forest Fire

Figure 10- Climate change, severity of Hydrological Event leading to Extreme Drought

Figure: 11- Over use/Exploitation of ground, water resources and Energy resources.

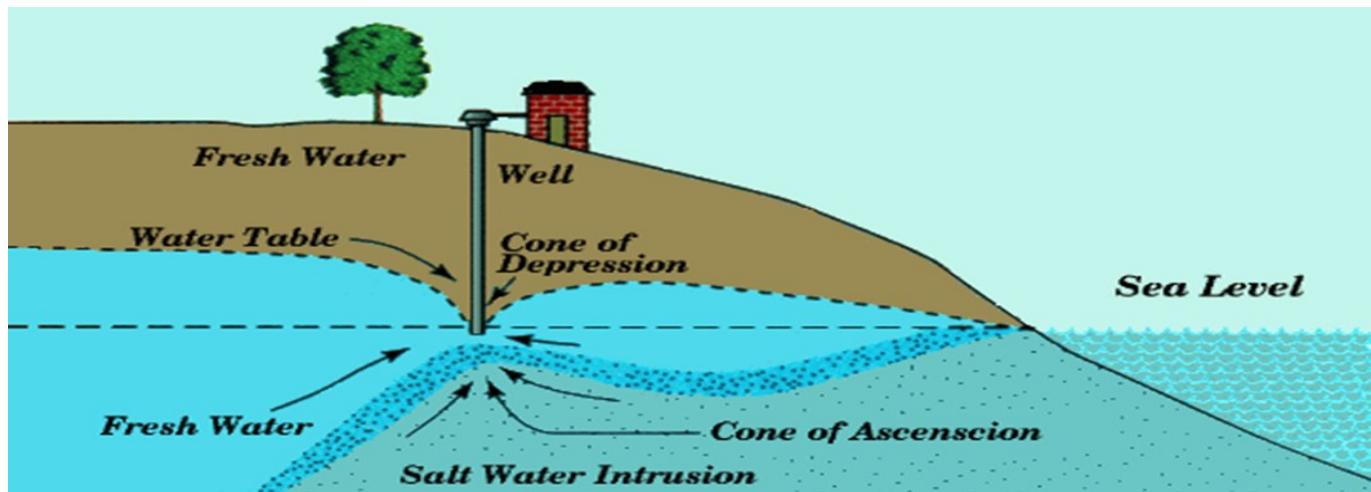


Figure :12-Climate change, over exploitation of Groundwater and Sea water Intrusion

Adaptation/Resilient Mechanism:

Adaptation to climate change will demand a firm commitment from leaders in government, private sector and civil society worldwide. Public policy on key water services and functions must prioritize a strengthening of competencies and institutions, and ensuring the infrastructure investment necessary for long-term water security. But policy choices and other decisions made outside the water domain are also crucial if we are to change and improve how water is allocated and used, as well as making the adaptation to new, more efficient management systems more effective and less costly. The international community will have to balance investments to reduce risks and to prepare for increasingly severe climate events against investments to improve responses to the crises already being experienced today. Both are vital, and focusing on today's problems can also create greater resilience for dealing with the problems of tomorrow.

Climate-resilient water management

Climate-resilient water management involves adaptive strategies to ensure sustainable and equitable water resources in the face of climate change. It integrates practices like rainwater harvesting, efficient irrigation systems, and the restoration of wetlands and watersheds to enhance natural water storage and recharge. Utilizing advanced technologies such as real-time monitoring, predictive analytics, and AI for demand forecasting can optimize water usage. Incorporating community participation and policies that promote conservation and reduce over-extraction further strengthen resilience. This approach ensures water security while mitigating the risks of floods, droughts, and other climate-induced water challenges.

Climate Change Mitigation:

“Mitigation comprises human interventions to reduce the sources or enhance the sinks of greenhouse gases (GHGs).”

“While mitigation options are also available across every major water-related sector, they remain largely unrecognized” (WWDR, 2020).

Existing strategies to adapt and build climate resilience in water:

Three basic strategies exist to meet water needs as climate variability and the frequency of extremes rise:

1. Ensure equity in supply and efficiency in demand by seeing to it that water is supplied to all users when needed, in the amounts needed and at the quality needed, with the definition of “need” incorporating efficiency and use considerations.

2. Increase water storage, from soil to watershed, with the aim to buffer fluctuations in water availability.

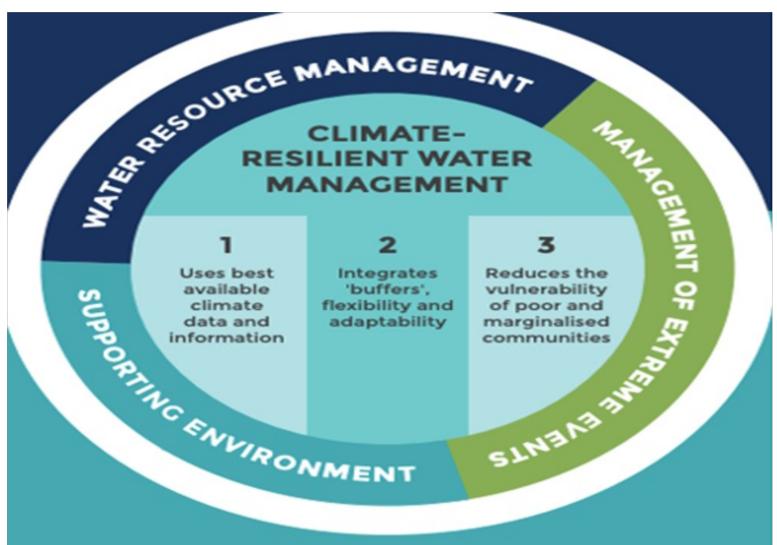


Figure 13: Climate Resilient Water Management

3. Reduce water-related risks by avoiding damage to livelihoods, infrastructure and the environment as hydrologic systems fluctuate.

Climate change is already impacting the water sector, which is still far from having its house in order, particularly in relation to the Sustainable Development Goal 6 targets. Addressing water-related risks often requires tackling these “old” issues first — or at least simultaneously — across three interconnected levels:

- ◆ Integrated water resources management principles and water governance structures to decide on who gets what water, when and how, should be in place and work for the interests of the poorest and most vulnerable stakeholders.
- ◆ Institutions need to gather data and be risk-informed, prepared and capable of planning ahead and investing in resilient systems and resource management.
- ◆ People need to be empowered to act through information, knowledge, assets, practices and voice in decision-making on access and management.

Principles to follow for a water-secure future:

To address water availability, quality and equity, principles of integrated water resources management need to be put into practice. This has proven to be a tough and slow but fundamental process that is needed as the basis for climate-resilient development.

Increasing access to climate-resilient WASH services demands strengthening the institutional, technical, organisational and financial capacities of the institutions that are responsible for service delivery, from the local to the national level.

We need to build awareness and understanding around how climate change affects water users, their water supply systems, livelihoods and the water resource management they depend on. Through this, actions can be identified and promoted at scale that make water access endure over time, bringing greater water and food security for all.

Strategy 1: Ensuring equity in water supply and efficiency in demand:

In a water-scarce context, the priority is ensuring the human right to water and sanitation for all, especially those who have no access to safe water. All people have a right to a minimum amount of water to cover their most basic needs. As long as universal coverage remains unmet, planning and investment in projects that expand service access — and, by extension, water use — stays imperative.

An assessment of climate resilience of community-level water and sanitation systems should be done. Climate change in the shape of more frequent intense rainfall and flooding is a complicating factor on top of this pre-existing inequity.

Yet there are many systems and sectors in which water demand can be better managed, reducing water waste (and associated energy waste). Examples of curbing water demand are reducing water losses in use systems (by fixing leakages, changing irrigation methods and ensuring maintenance); shifting zones, timing, patterns and crop varieties towards lower water demand and/or greater drought tolerance; the re-use of water; and measuring and valuing water use, also economically. Perhaps the most evident action is to avoid water pollution and treat wastewater, thereby maintaining water quality for downstream and future uses. Especially in dry areas, overuse of water should be addressed through awareness raising, monitoring of use and practices, and technologies that fit the context.

Strategy 2: Increasing water storage:

Climate change increases the variability of rainfall patterns in time and space, making water availability more unpredictable for water users and worrying farmers. Increased water storage is often an important adaptation strategy, with the aim to buffer fluctuations in water availability when rainfall patterns become more variable across the seasons.

Variations can be buffered at different scales, from plot to watershed: Water needs to infiltrate where it falls, and runoff needs to be slowed down as much as possible in a watershed to reduce water flow during intense events and water's erosive power. Water managers need to analyze the water cycle at the watershed level. Possible actions to increase storage capacity include soil conservation, fertility and moisture management practices, building terraces and stone walls, and ensuring vegetation cover through reforestation, conservation and restoration. Water storage can be done in and through natural systems (e.g., wetland and natural pond management, managed aquifer recharge) and in-built systems (e.g., reservoirs and their operation, small-scale rainwater harvesting systems at the household or plot level).

It is always the conserving and restoring ecosystems from a landscape and watershed perspective. Conserving, restoring and sustainably using ecosystems and biodiversity are fundamental to sustainable development and enhancing climate and disaster resilience. This should be done in combination with structural measures such as surface storage to overcome sudden dry spells in the rainy season and improve water infiltration to feed mountain springs

Strategy 3: Reducing water-related risks for people and infrastructure

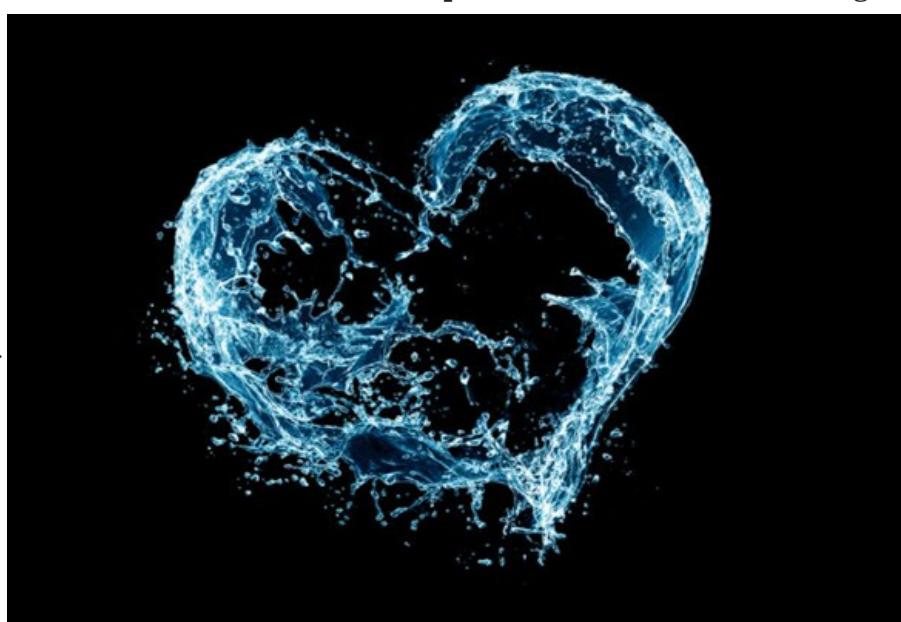
Climate change brings higher risks of floods and droughts, which lead to interrupted services and damage or loss of water infrastructure and livelihoods. To reduce these risks, our most important ally is the natural environment and working with and through nature-based solutions for water-related risks. This strategy includes preventive measures such as hazard, vulnerability and risk awareness and mapping, territorial planning, adjusting design criteria for water systems, and building housing and drainage on high ground. It also includes preparedness measures such as physical or vegetative riverbank protection, monitoring and early warning systems.

climate risks and adaptation measures structurally in our WASH and water governance projects in both rural and urban areas. Our programs should include awareness building, vulnerability and risk assessments, and the promotion of concrete measures that people can take to reduce risks and build resilience.

What if water use adds to the problem of global warming?

Though climate change is affecting water availability, which demands adaptive measures, the energy use in the sector also contributes to the problem of greenhouse gas emissions (e.g., though fossil fuelled pumping of water for irrigation or water supply systems). Plus, mitigation efforts such as large-scale reforestation for carbon capture can evaporate scarce surface water. Coherency and trade offs must be considered between water use, emissions and carbon storage is the new vista to be analysed properly.

Principles to follow for a water-Secure future:


To address water availability, quality and equity, principles of integrated water resources management need to be put into practice. This has proven to be a tough and slow but fundamental process that is needed as the basis for climate-resilient development.

Increasing access to climate-resilient WASH services demands strengthening the institutional, technical, organizational and financial capacities of the institutions that are responsible for service delivery, from the local to the national level.

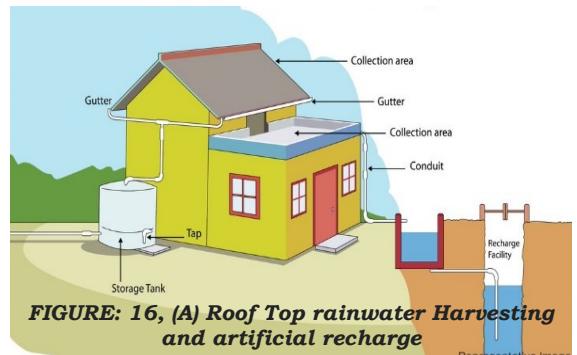
We need to build awareness and understanding around how climate change affects water users, their water supply systems, livelihoods and the water resource management they depend on. Through this, actions can be identified and promoted at scale that make water access endure over time, bringing greater water and food security for all.

The Way Forward:

- ◆ **Climate policymakers must put water at the heart of action plans.** Sustainable water management helps society adapt to climate change by building resilience, protecting health and saving lives. It also mitigates climate change itself by protecting ecosystems and reducing carbon emissions from water and sanitation transportation and treatment.
- ◆ **Politicians must cooperate across national borders** to balance the water needs of communities, industry, agriculture and ecosystems.
- ◆ **Innovative financing for water resource management** will be needed to help attract investment, create jobs, and support governments in fulfilling their water and climate goals.

FIGURE : 14. Putting Water at the heart of action plans

Sustainable, affordable and scalable water solutions include:


- ♦ **Improving carbon storage.** Peatlands store at least twice as much carbon as all of Earth's forests. Mangrove soils can sequester up to three or four times more carbon than terrestrial soils. Protecting and expanding these types of environments can have a major impact on climate change.
- ♦ **Protecting natural buffers.** Coastal mangroves and wetlands are effective and inexpensive natural barriers to flooding, extreme weather events and erosion, as the vegetation helps regulate water flow and binds the soil in flood plains, river banks and coastlines.
- ♦ **Harvesting rainwater-** Rainwater capture is particularly useful in regions with uneven rainfall distribution to build resilience to shocks and ensure supplies for dry periods. Techniques include rooftop capture for small-scale use and surface dams to slow run-off to reduce soil erosion and increase aquifer recharge.
- ♦ **Adopting climate-smart Agriculture practices:** Using conservation techniques to improve organic matter to increase soil moisture retention; drip irrigation; reducing post-harvest losses and food waste; and, transforming waste into a source of nutrients or biofuels/biogas.
- ♦ **Reusing Treated wastewater.** Unconventional water resources, such as regulated treated wastewater, can be used for irrigation and industrial and municipal purposes. Safely managed wastewater is an affordable and sustainable source of water, energy, nutrients and other recoverable materials.
- ♦ **Judiciously Harnessing groundwater:** In many places, groundwater is over-used and polluted; in other places, it is an unknown quantity. Exploring, protecting and sustainably using groundwater is central to adapting to climate change and meeting the needs of a growing population.

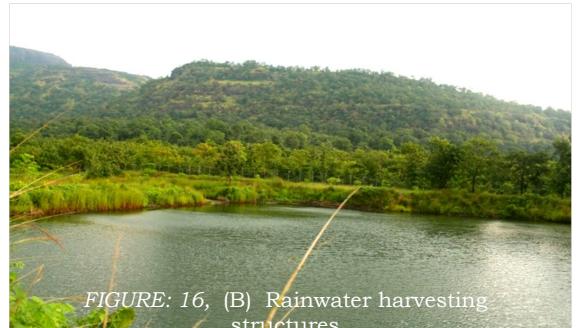

FIGURE :15 Diverse mangrove forest have highest carbon storage facility.

FIGURE:16 Conservation of Wetlands.

FIGURE: 16, (A) Roof Top rainwater Harvesting and artificial recharge

FIGURE: 16, (B) Rainwater harvesting structures

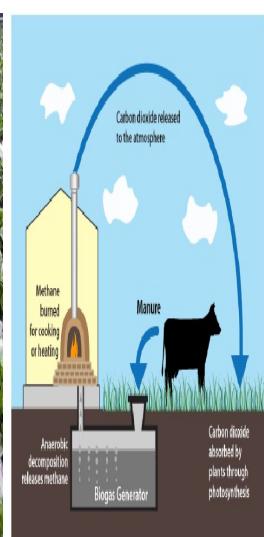

FIGURE: 16, (C) Check Dam for rainwater harvesting

FIGURE: 17 (A)
Sprinkler irrigation practices

FIGURE: 17 (B)
Drip Irrigation practices

FIGURE: 17 (C) Biogas generation from cow dung slurry as part of anaerobic processes. "Another way to think of the differences is that biomass is the raw material and bio-gas is the End product"

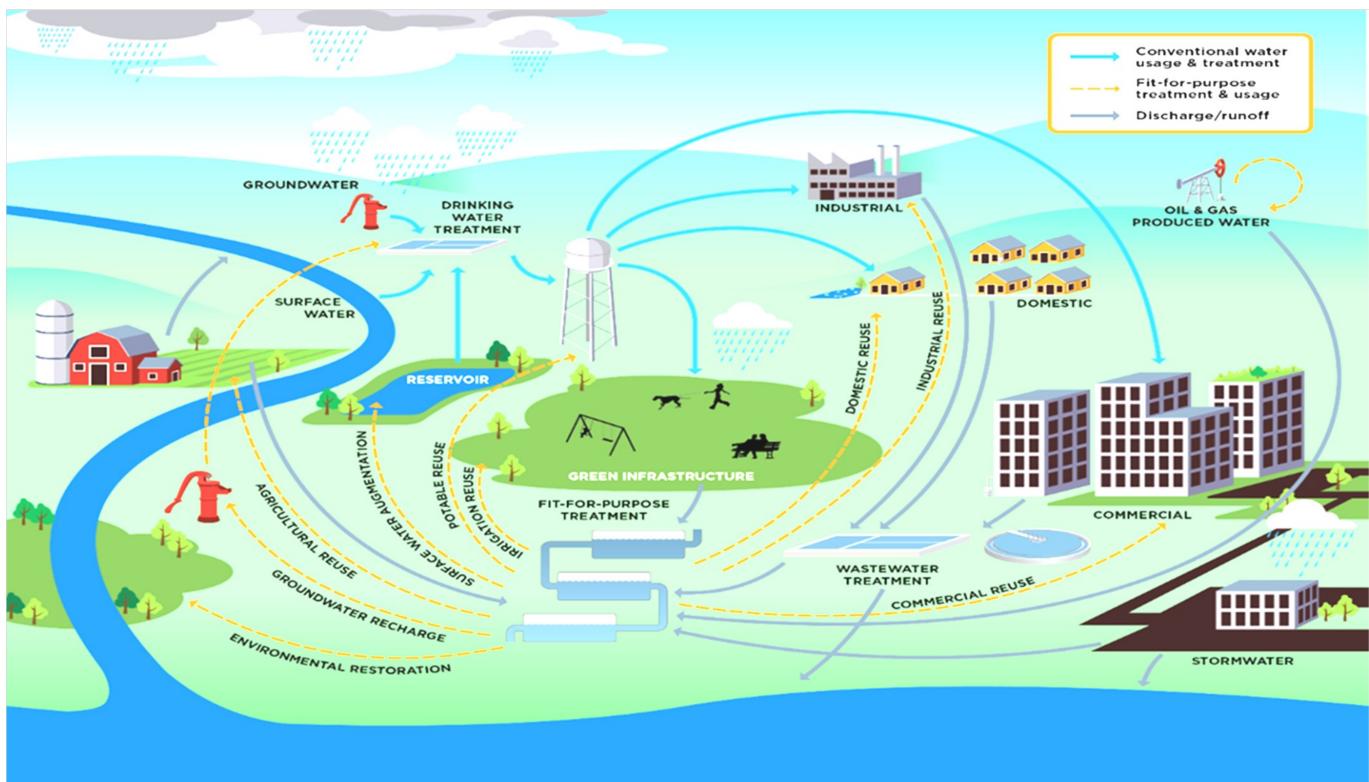


FIGURE: 18 Waste water treatment for re-cycle and re-use

Better Soil and Water Conservation practices:

Soil and water conservation practices are those activities at the micro watershed level which maintain or enhance the productive capacity of the land including soil, water and vegetation in areas prone to degradation through the processes as:

- ◆ **To control runoff Prevention or reduction of soil erosion, compaction, salinity;**
- ◆ **Conservation of drainage/runoff of water and to harvest Excess rainwater**
- ◆ **Maintenance or improvement of soil fertility and land capability.**

The elaborated actions of various Soil and water conservation measures are:

- ◆ Managing the river/stream flow regime to provide overall benefits such as reducing river bank, erosion, decreasing sediment transport and accumulation and improving water quality.
- ◆ Maintaining an adequate supply of water to meet demands for irrigation, agriculture, as well as domestic and industrial uses at acceptable levels of assurance
- ◆ Maintaining water quality criteria that meet government standards and other societal Norms
- ◆ Land utilization based on land capability.
- ◆ Top soil protection.
- ◆ Reducing the siltation in water bodies/reservoirs.
- ◆ Keep vegetative cover whole the year.
- ◆ Rain water conservation as per location specific conditions
- ◆ Proper drainage facility for excess water
- ◆ Construction of check dams and other water conservation and recharge measures for life-saving irrigation
- ◆ Increasing ground water storage,
- ◆ Inter and sequence cropping,
- ◆ Efficient use of marginal lands
- ◆ Maintaining sustainability of ecosystem,
- ◆ Increasing farm income through integrated farming system by appropriate Soil and water conservation measures,

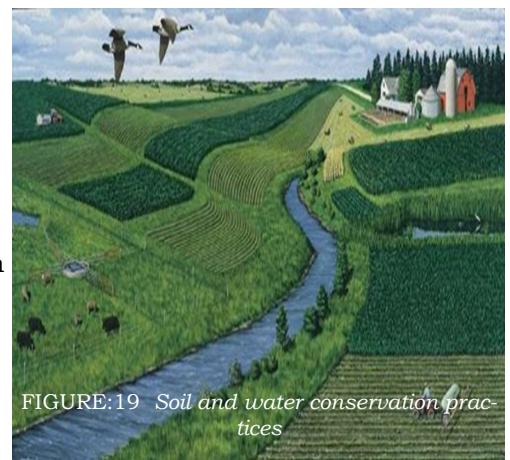
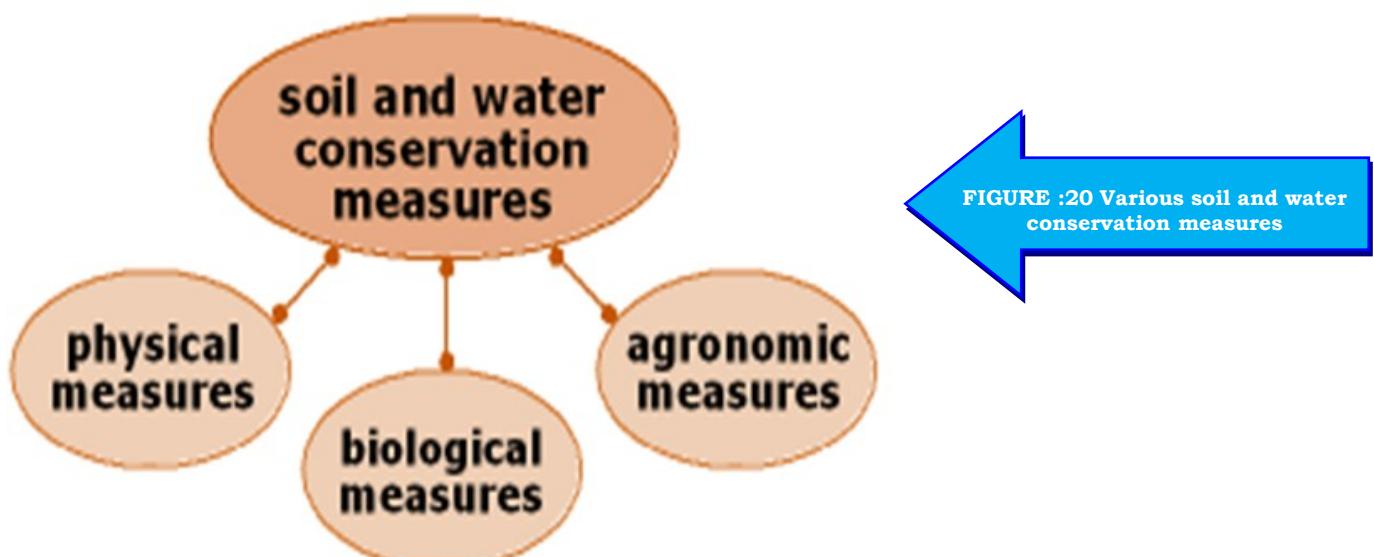
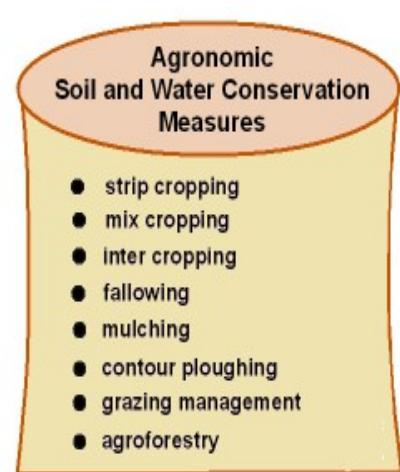
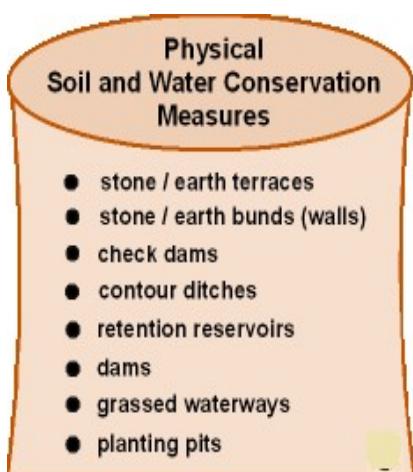



FIGURE:19 Soil and water conservation practices



- ♦ Practicing alternate land use systems,
- ♦ Reducing vulnerability to natural disasters such as floods, droughts and landslides.
- ♦ Utilizing natural resources effectively to mitigate adverse effects, prevent environmental degradation, enhance water yield and increase biomass production.
- ♦ Promoting appropriate agricultural and forestry land use practices and associated soil and water conservation measures that allow production levels that provide sufficient water and soil moisture
- ♦ income to land users without causing any long-term negative impacts on the natural resources of the watershed
- ♦ Distributing the benefits of land and water resources development more equally amongst the stakeholders
- ♦ To promote Social and Economic development
- ♦ To decrease local vulnerability to climatic extremes
- ♦ To ensure maintenance of Environment and biodiversity.

The Land and Water resources development in a micro watershed is attributed to the various soil and water conservation measures taken up in the watershed. Thus, the soil and water resources conservation are considered as a fundamental aspect of micro-watershed development and management.

The various aspects of Land and water development and its conservation measures are broadly classified in to **Physical, Biological and agronomic Measures**.

Various Soil and Water conservation practices are detailed as below:

FIGURE: 21.A Physical Measures

FIGURE: 21.B Biological Measures

FIGURE: 21.B Agronomic Measures.

Conclusion:

Climate change is certain to have significant impacts on surface water and groundwater resources, including changes in water availability, quality, and ecosystem function. The adaptation measures, such as water conservation by rainwater harvesting and artificial recharge, watershed management, restoration of wetlands and riparian zones, infrastructure adaptation, and ecosystem-based adaptation, groundwater recharge techniques, and effective monitoring and management, better soil and water conservation measures or practices including biological (agroforestry and agricultural) and mechanical measures (terracing, bunding, trenching, check dams, etc.) is imperative to reduce runoff, soil erosion and to improve soil quality, water quality, moisture conservation, and overall crop productivity in a sustainable way. Biological measures are economically feasible and environmentally friendly; also improve soil properties along with the conservation of soil and water resources. Further, the combined use of biological and mechanical measures will help in improving and sustaining the agricultural productivity. further, promotion of **integrated water resources management (IWRM)** and the development of climate-resilient water supply infrastructure are also critical for ensuring the sustainable management of surface water and groundwater resources in the face of climate change.

Priority should be given to identify, evaluate and refinement of the water harvesting techniques and artificial/ managed aquifer recharge system in different agro-Ecological regions of the country to mitigate the climate change impact on water resources as part of micro watershed or small hydrological units. Studies should thoroughly concentrate on upstream-downstream linkages at micro watershed scales for assessing impact on flow Regimes (surface and ground water resources) and perennialism of streams and rivers needs to be initiated. It is important to consider the interconnected nature of water resources and to adopt a holistic approach to water management to ensure the sustainable management of surface and groundwater water resources. Also, immediate research studies to be initiated on impact of sea level rise on the coastal watershed /groundwater regime, vulnerability of water resources to climate change and identifying key risks and prioritizing the adaptation responses /options as detailed above for building resilience against those challenges.

The Need of the Hour is the Collaboration Across Sectors, Leveraging Traditional Knowledge, Modern Technologies and Global Commitments is Essential to Mitigate Climate Impacts on Water resources and Ensure Long-term Water Security.

AMRUT PROGRESS

AMRUT 1

Outlay: 2357 Cr.

TOTAL PROJECTS

1108 Nos.

Water Supply, Sewerage, Drainage, Urban Transport, Green Spaces & Parks

AMRUT 2.0

Outlay: 3515 Cr.

TOTAL PROJECTS

737 Nos.

Water Supply, Sewerage, Waterbody Rejuvenation, Green Spaces & Parks

AWARDED

1108 Nos.

Awarded all projects of worth Rs. 2322 Cr.

AWARDED

447 Nos.

Awarded projects of worth Rs. 1500 Cr.

COMPLETED

1056 Nos.

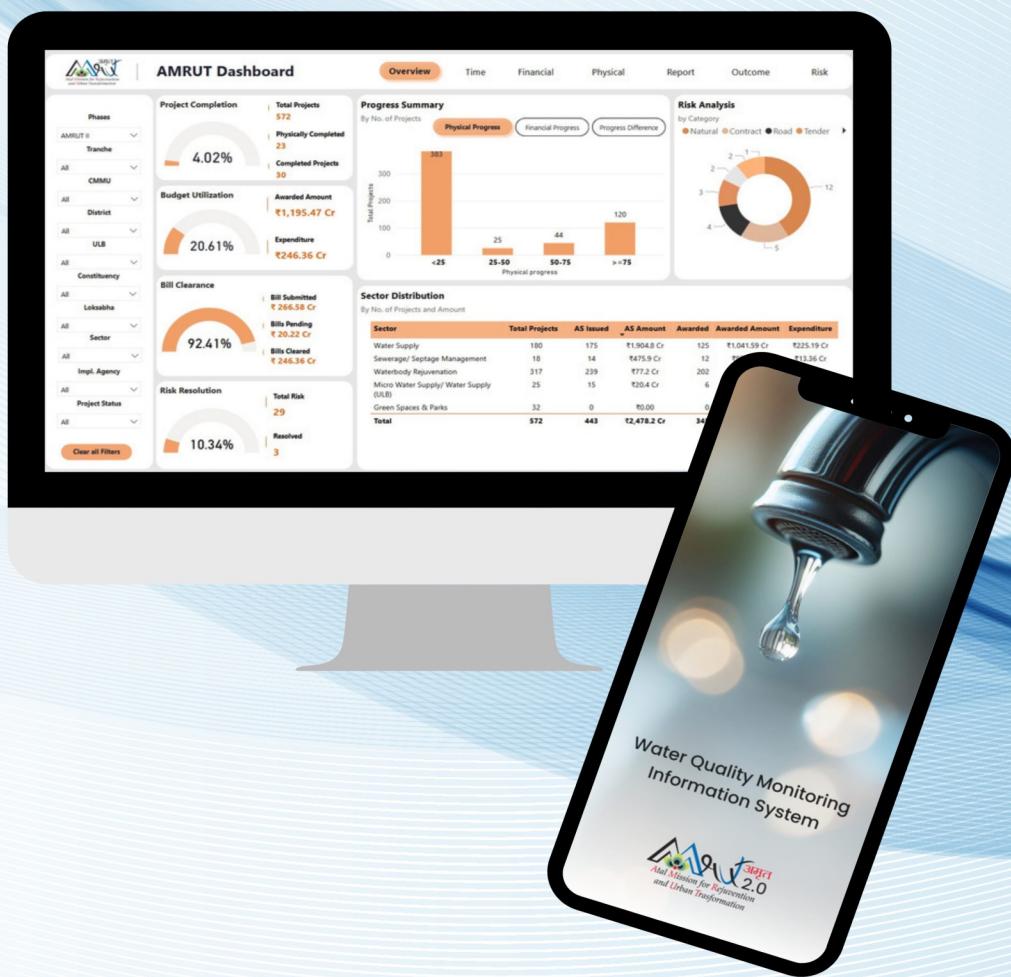
52 projects are ongoing

COMPLETED

134 Nos.

603 projects are ongoing

EXPENDITURE


2229 Cr.

95% of expenditure achieved

EXPENDITURE

555 Cr.

Expenditure achieved through the awarded projects

